1,849 research outputs found

    Relocation and investment in R&D by firms

    Get PDF
    The literature on foreign direct investment has analyzed corporate location decisions when firms invest in R&D to reduce production costs. Such firms may set up new plants in other developed countries while maintaining their domestic plants. In contrast, we here consider firms that close down their domestic operations and relocate to countries where wage costs are lower. Thus, we assume that firms may reduce their production costs by investing in R&D and likewise by moving their plants abroad. We show that these two mechanisms are complementary. When a firm relocates it invests more in R&D than when it does not change its location and, therefore, its production cost is lower in the first case. As a result, investment in R&D encourages firms to relocate.info:eu-repo/semantics/publishedVersio

    Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries.

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries

    Get PDF
    Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems

    Novel survey method finds dramatic decline of wild cotton-top tamarin population

    Get PDF
    For conservation purposes, accurate methods are required to track cotton-top tamarins in their natural habitat. As existing census methods are not appropriate for surveying these monkeys, a lure-transect method combined with playback vocalization was used here to allow accurate counting of the animals

    The diacylglycerol kinase α/Atypical PKC/ÎČ1 integrin pathway in SDF-1α mammary carcinoma invasiveness

    Get PDF
    Diacylglycerol kinase α (DGKα), by phosphorylating diacylglycerol into phosphatidic acid, provides a key signal driving cell migration and matrix invasion. We previously demonstrated that in epithelial cells activation of DGKα activity promotes cytoskeletal remodeling and matrix invasion by recruiting atypical PKC at ruffling sites and by promoting RCP-mediated recycling of α5ÎČ1 integrin to the tip of pseudopods. In here we investigate the signaling pathway by which DGKα mediates SDF-1α-induced matrix invasion of MDA-MB-231 invasive breast carcinoma cells. Indeed we showed that, following SDF-1α stimulation, DGKα is activated and localized at cell protrusion, thus promoting their elongation and mediating SDF-1α induced MMP-9 metalloproteinase secretion and matrix invasion. Phosphatidic acid generated by DGKα promotes localization at cell protrusions of atypical PKCs which play an essential role downstream of DGKα by promoting Rac-mediated protrusion elongation and localized recruitment of ÎČ1 integrin and MMP-9. We finally demonstrate that activation of DGKα, atypical PKCs signaling and ÎČ1 integrin are all essential for MDA-MB-231 invasiveness. These data indicates the existence of a SDF-1α induced DGKα - atypical PKC - ÎČ1 integrin signaling pathway, which is essential for matrix invasion of carcinoma cells

    Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy

    Get PDF
    The epidermal growth factor receptor (EGFR) is a validated target in squamous cell carcinoma (SCC) of the head and neck. Most patients, however, do not respond or develop resistance to this agent. Mammalian target of rapamycin (mTOR) is involved in the pathogenesis of SCC of the head and neck (SCCHN). This study aimed to determine if targeting mTOR in combination with EGFR is effective in SCC, and to develop early pharmacodynamic markers of efficacy. Two SCC cell lines, one resistant (HEP2) and one of intermediate susceptibility (Detroit 562) to EGFR inhibitors, were xenografted in vivo and treated with an mTOR inhibitor (temsirolimus), an EGFR inhibitor (erlotinib) or a combination of both. Temsirolimus exerted superior growth arrest in both cell lines than erlotinib. The combined treatment resulted in synergistic antitumor effects in the Detroit 562 cell line. Immunohistochemical assessment of pharmacodynamic effects in fine-needle aspiration (FNA) biopsies early after treatment using phospho MAPK, Phospho-P70 and Ki67 as end points demonstrated pathway abrogation in the Detroit 562 tumours treated with the combination, the only group where regressions were seen. In conclusion, an mTOR inhibitor showed antitumor activity in EGFR-resistant SCC cell lines. Marked antitumor effects were associated with dual pathway inhibition, which were detected by early FNA biopsies

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Is leadership a reliable concept in animals? An empirical study in the horse

    Get PDF
    International audienceLeadership is commonly invoked when accounting for the coordination of group movements in animals, yet it remains loosely defined. In parallel, there is increased evidence of the sharing of group decisions by animals on the move. How leadership integrates within this recent framework on collective decision-making is unclear. Here, we question the occurrence of leadership in horses, a species in which this concept is of prevalent use. The relevance of the three main definitions of leadership - departing first, walking in front travel position, and eliciting the joining of mates - was tested on the collective movements of two semi-free ranging groups of Przewalski horses (Equus ferus przewalskii). We did not find any leader capable of driving most group movements or recruiting mates more quickly than others. Several group members often displayed pre-departure behaviours at the same time, and the simultaneous departure of several individuals was common. We conclude that the decision-making process was shared by several group members a group movement (i.e., partially shared consensus) and that the leadership concept did not help to depict individual departure and leading behaviour across movements in both study groups. Rather, the different proxies of leadership produced conflicting information about individual contributions to group coordination. This study discusses the implications of these findings for the field of coordination and decision-making research

    Modification of BRCA1-associated breast cancer risk by HMMR overexpression

    Get PDF
    Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-kappa B signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer. The effect of hyaluronan-mediated motility receptor (HMMR) expression in BRCA1-associated breast cancer risk remains unknown. Here, HMMR overexpression induces the activation of cGAS-STING and non-canonical NF-kappa B signalling, instigating an immune permissive environment for breast cancer development
    • 

    corecore